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Cities are perhaps the ultimate expression of human sociality displaying at

once humanity’s greatest achievements and some of its most difficult chal-

lenges. Despite the increasing importance of cities in human societies our

ability to understand them scientifically, and manage them in practice, has

remained unsatisfactorily limited. The greatest difficulties to any scientific ap-

proach to cities have resulted from their many interdependent facets, as social,

economic, infrastructural and spatial complex systems, which exist in similar

but changing forms over a huge range of scales. Here, I show how cities may

evolve following a small set of basic principles that operate locally and can ex-

plain how cities change gradually from the bottom-up. As a result I obtain a

theoretical framework that derives the general open-ended properties of cities

through the optimization of a set of local conditions. This framework is used

to predict, in a unified and quantitative way, the average social, spatial and

infrastructural properties of cities as a set of scaling relations that apply to

all urban systems, many of which have been observed in nations around the

world. Finally, I compare and contrast the structure and dynamics of cities to

those of other complex systems that share some analogous properties.
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Cities have been an endless source of fascination throughout human history [1, 2]. One of

their most extraordinary properties is that cities exist, in recognizable but changing form, over an

enormous range of scales from small towns with a few people to the largest metropolitan areas,

presently headed by Tokyo with over 35 million inhabitants. In the last decades increasing

urbanization, involving most of the world’s nations and billions of people, has brought the

problem of understanding cities to the fore of both policy and research [3]. There has been a

long tradition of seeking insight into the nature of cities through analogies to other physical

and biological systems. Though compelling, such metaphors, drawn from sources as diverse as

river networks [4], biological organisms [5, 6, 7, 8], insect colonies [1, 2, 9] or ecosystems [10],

have remained limited in helping us understand and plan cities successfully.

Recently, analyses of new and more extensive data from many urban systems worldwide

have begun to establish a series of general statistical regularities of cities as systematic nonlinear

variations of urban quantities, Y , with city size, N , measured as population or land area[11, 12,

13, 14, 15, 8, 16, 17], often as scale invariant relations Y (N) = Y0N
β , where Y0 and β are

constants in N . These empirical scaling results suggest that, despite their apparent complexity,

cities may actually be quite simple as their average properties may be set by just a few key

parameters [13, 15]. However, a fundamental derivation of these scaling relations has been

lacking. Here, I develop a general theoretical framework of the interplay between social and

urban infrastructural networks imbedded in space and time. From this perspective, I show

how cities emerge as co-located, scale-invariant social networks made possible by co-evolved

infrastructure networks subject to general efficiency constraints.

The most important properties of cities arise from two effects: i) the concentration of people

in space and time; and ii) more intense use of urban material infrastructure. Together, i) and

ii) promote social contact and coordination, increasing the production rates of social quantities,

such as wealth, innovation, crime, etc [13] (superlinear scaling, β � 1.15) and allow for savings
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in roads, cables, etc per capita as cities grow (sublinear scaling, β � 0.85), see Fig. 1.

To show how these properties are the result of the same essential dynamics consider the

simplest model of a city with land area A and population N . I write the interactions between

people i, j in terms of a social network A
k

ij
and assume that social interactions are local, over an

area a0 and have strength gk (k parameterizes different types of social links). The locality of in-

teractions changes the simplest result that the number of links in a network with N nodes scales

as ∼ N
2 (Metcalfe’s law), leading instead to (see SI for details) Y = G

N
2

A
, with G ≡ ḡa0�,

where ḡ is the average link strength and � is the typical length travelled by people, information,

etc. Each urban output, Y , has physical units set by gk, but it is often useful to think of all

quantities ultimately expressed in terms of energy per unit time (power).

Another crucial property of cities is that they are mixing populations. This concept is famil-

iar from population biology [18] and is the basis of definitions of functional cities as metropoli-

tan areas [19]. Population mixing translates into the cost of realizing interactions proportional

to the transverse dimension of the city L = A
1/2. Thus, the power spent in transport processes

to keep the city mixed is W = �LN = �A
1/2

N , where � is a force per unit time. This cost

must be covered by each individual’s budget, y = Y/N , requiring y � W/N , which implies

A(N) = aN
α with α = 2/3 and a = (G/�)α. Thus, Y = Y0N

β , where β = 2−α = 1 + 1
3 > 1

and Y0 = G
1−α

�
α. This simple model satisfies both principles i) and ii) and leads to area A

that scales sublinearly with N (α = 2/3 < 1), and socioeconomic outputs, Y , scaling super-

linearly (β = 4/3 > 1). However, in practice this gives only an upper bound on β. As cities

grow, transportation of people, goods and information becomes channeled into networks, which

reduce dissipation relative to direct unstructured paths and obey a distinct set of principles.

Although they take many diverse forms, the volume of all urban infrastructure networks

tends to scale sublinearly with population size N [13, 8], but faster than total land area. We

can arrive at these facts and obtain scaling laws consistent with data by requiring that cities
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grow following four principles: 1. Mixing Population: The city develops so that citizens

can explore it fully, given the resources at their disposal. I formalize this principle relative

to the sketch given above by requiring that the minimum resources accessible to each urbanite,

Ymin/N ∼ GN/A, match the cost of reaching anywhere in the city. Thus, this can be seen

also as an entry condition into the city [20]. I characterize the geometry of paths through a

Hausdorff dimension, H , so that distance travelled ∝ A
2

2+H (see SI). Matching density to cost

I obtain a generalized area scaling relation, A(N) = aN
α
, α = 2

2+H
(α = D

D+H
in D di-

mensions). H ∼ 1 is special because it allows each individual to fully explore the city within

the smallest distance travelled (see SI for discussion). 2. Incremental network growth: Infras-

tructure networks develop to connect people as they join (leading to decentralized networks

[8]). The average distance between individuals is d = ρ
−1/2 =

�
A

N

�1/2. This implies the to-

tal network area An(N) ∼ s∗Nd = s∗A
1/2

N
1/2, where s∗ is an invariant D − 1 dimensional

volume characterizing the smallest network transverse dimension. Together with 1. this im-

plies An ∼ s∗a
1/2

N
5/6. (An(N) ∼ s∗A

1/D
N

(D−1)/D = s∗a
1/D

N
D

2+D−1
D(D+1) in D dimensions).

3. Bounded human effort: The coupling G = a0ḡ� is an approximate constant of city size.

This includes (see SI) the interaction area per individual a0, the quality and variety of social

interactions ḡ, and the travel distance � per person. As I show below, microscopic models of

the city determine an optimal G = G
∗, so that certain aspects of this assumption follow from

others. Finally, 4. Socioeconomic outputs are proportional to the number of locally interacting

people, so that Y = GN
2
/An ∼ N

1+1/6, which yields scaling exponents in agreement with a

wide variety of data [11, 12, 13, 14, 17, 21, 22, 23].

These principles do not require an explicit realization of networks, only their average proper-

ties. However, we can gain further insight by building a more microscopic theory of hierarchical

organization of infrastructure networks (c.f. [4, 6, 7]). This requires stronger assumptions but

will also reveal how some of the principles above follow from the general structure of interac-
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tions and dissipation. Consider a hierarchical network with branching b and number of levels

h. b measures the average ratio of infrastructure at successive levels, e.g. paths to small roads,

larger roads to highways. Note that the structure of these networks is not a simple hierarchical

tree [24]. The length of a network segment at level i is li and its transverse dimension si.(an

area in 3D networks and a length in 2D, e.g. roads). Because 2. requires that the total network

length is area filling li = ai/l, with ai = ab
i(α−1). The total network length Ln and area An are

Ln =
h�

i=0

liNi =
a

l

h�

i=0

b
iα =

a

l

b
α(h+1) − 1

bα − 1
� a

l
N

α = A/l, (1)

An =
h�

i=0

siliNi = s∗
a

l
b
−hσ

h�

i=0

b
(α+δ−1)i � s∗a

l

1

1− bα+δ−1
N

1−δ
. (2)

where Ni = b
i, Nh = N and δ = H

D2 α. I assumed α + δ < 1, which holds for D > 1. To obtain

this result I took the transverse dimension of network terminal units, s∗, to be an invariant.

This imposes a boundary condition on si = s∗b
(i−h)σ, where σ = δ − 1 < 0 and thus s0 =

s∗b
−hσ

>> sh = s∗, so that the width of network sections at larger scales is much larger than

for small ones, e.g. the width of highways versus small paths. Contrary to biological vascular

systems, where both the length and radius of the network at the smallest scales was assumed

invariant [7, 6], there is no evidence in cities for the invariance of the former, which depends on

the detailed layout of the city (e.g. longer or shorter blocks, larger or smaller buildings, etc).

These relations also imply that the network average transverse dimension S̄ = An/Ln ∼ N
1/6.

The scaling of transverse dimensions together with the average conservation of flux in the

network siρiviNi = si−1ρi−1vi−1Ni−1 for all i, sets the scaling for ρivi, which is the average cur-

rent cross-sectional density in each network branch. This is interesting because it characterizes

the speed and density of carriers in the network at different levels, which controls dissipation

mechanisms in the city. As a consequence of flux conservation and of the scaling of si, I obtain

that ρivi = b
−δ

ρi−1vi−1, which implies that the current density decreases from the root to the

leaves, so that e.g. highways are faster and more densely packed than smaller roads, as observed
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[25]. Making the further assumption that the current density at the smallest branches is invariant

ρhvh = ρ∗v∗ this leads to ρivi = b
δ(h−i)

ρ∗v∗. Then, because the total current is conserved it is

independent of the level i and takes the value Ii = I = I0N , with I0 = s∗ρ∗v∗. I now derive

the properties of dissipative processes in the network. There are many possible forms of dissi-

pation, including those that occur at large velocity or density. I make the standard assumption

that the resistance per unit length per transverse network area, r, is constant [4, 7], leading to

ri = r
li

si

. For Ni parallel resistors this gives the total resistance per level Ri = ar

ls∗
b
−i(1−α+δ)+hσ

and the total dissipated power, W , is

W =
h�

i=1

Wi = I
2

h�

i=1

Ri = rI
2 a

ls∗
b
hσ

1− b
−(h+1)(1−α+δ)

1− b−(1−α+δ)
� W0N

1+δ
, (3)

which scales superlinearly with N , with 1 + δ � 1 + 1/6 and W0 � r
as∗(ρ∗v∗)2

l(1−b−(1−α+δ))
. Thus,

dissipation scales naturally like social interactions revealing the fundamental nature of cities

as scale-invariant complex adaptive systems. Finally, we cast the problem of defining cities in

terms of standard optimization, maximizing social outputs subject to network dissipation, as

L = Y −W + λ1

�
�A

H/D −GN/A
�

+ λ2

�
An − cρ

−1/D
N

�
→ 2α− 1

α
G

∗ N
2

An(N)
, (4)

where c is a constant, see SI text, and λ1, λ2 are Lagrange multipliers. Eq. 4 gives the basis

for the derivation of the properties of every segment in the network, through Eqs. 1-2. This

results in the scaling of area, network properties and socioeconomic quantities derived above,

see Table 1 for a summary. The novelty in Eq. (4) is the prediction of an optimal G, through

dL/dG = 0, see Fig.2b. Both socieconomic outputs and dissipation grow with G but the

latter grows with a larger power, leading to two solutions to L = 0: G = Gmin = 0 and

G = Gmax =
�

(�α
l)2

r�I2
0

� 1
2α−1 , where r

� � r, see SI. Thus, if the balance of social interactions is

positive, ḡ > 0, human societies are always unstable towards the formation of cities. However,

there is an upper G = Gmax (reached e.g. via increases in human capital or mobility) beyond
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which dissipation overcomes social benefits and the city becomes unstable. In between there

is an optimum G = G
∗ =

�
1−α

α

� 1
2α−1 Gmax≤ Gmax where the city is most productive. The

existence of G
∗ expresses the average balance between social interactions and infrastructure

networks that defines the city at all scales.

The present conceptualization of cities deals primarily with average quantities (mean field

theory). An eventual formalization that includes statistical fluctuations [21, 22, 23] and details

of specific quantities, Y , will contribute to a more complete urban theory and may improve

on the prediction of the value of particular exponents. There are several interesting analogies

between this view of cities and other complex systems. As in biological organisms [6, 7],

infrastructure networks are volume filling; however in cities they scale faster with population

than their embedding volume. Thus, infrastructure in large cities often moves into the third

dimension, above or below ground. In contrast, by concentrating people and their interactions

as sources of the system’s productivity, the city leads to increasing returns to population (β >

1), magnifying per capita wealth creation, innovation and crime and accelerating all forms of

social life [13]. This effective contraction of time is often observable in the acceleration of

particular behaviors [13] and may be associated with increased cognitive stimulation and stress

[26, 27]. As such, cities manifest the opposite character to biological organisms, where the

target of optimization is the minimization of energy dissipation [4, 6, 7] and the pace of change

is determined by network constraints making larger organisms slower. This makes transport

in larger urban networks less efficient, which is necessary to enable the growth in the city’s

primary social functions [28]. It is because dissipative processes scale like social interactions

that cities can be scale invariant as larger cities can incur the same average costs per unit of

productivity as small towns, while growing in functional diversity [28].

This acceleration and concentration of interactions in cities has parallels in other systems

that are driven by attractive forces and that become denser with scale. The simplest such sys-
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tems are stars, whose luminosity (power emitted) increases superlinearly with mass. However,

differences in the nature of interactions and transport processes make their scaling exponents

different quantitatively and ultimately limit the complexity that a star can achieve. It is a fas-

cinating question if networks that densify with increasing scale [29], from ecosystems to infor-

mation networks in biology and society, share any similarities with cities despite their different

relationships to physical space.

In summary, I showed how the general scaling properties of cities can be derived from a

set of local principles that account for their gradual development, from the bottom-up, as den-

sifying social networks subject to geometric and efficiency constraints on urban infrastructure

networks. This theoretical framework shows how the many social, infrastructural, spatial and

temporal aspects of the city are entangled and expresses their common origin in terms of fun-

damental simpler dynamics. Unveiling these deeper connections is a necessary step towards a

more scientific approach to urban planing and policy and may shed light on some of the essential

conditions that have lead to the extraordinary development of complex human societies.
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Urban Scaling Relations Model (D=2,H=1) Model (D, H) Effect
Land area A = aNα α = 2

3 α = D

D+H
spatial densification

Network volume An = An0Nν ν = 5
6 ν = 1− δ = D

2+DH−H

D(D+H) growth of infrastructure
Network length L = L0Nλ λ = 2

3 λ = α area filling networks
Average network width S̄ = S̄0N σ̄ σ̄ = 5

6 σ̄ = 1− δ widening of roads
Interactions per capita y = Y0N δ δ = 1

6 δ = H

D(D+H) increased interactions
Socioeconomic rates Y = Y0Nβ β = 7

6 β = 1 + δ = D
2+DH+H

D(D+H) acceleration of social rates
Power dissipation W = W0Nω ω = 7

6 ω = 1 + δ increased congestion
Land Value PL = P0N δL δL = 3

2 δL = 1 + α + δ increased land rents

Table 1: Urban indicators and their scaling relations. The first column shows expected mean-
field values for scaling exponents vs. population size (D = 2, H = 1). The second column
shows the value of scaling quantities in general D spatial dimensions. The third column de-
scribes the effect.
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(a) (b)

Figure 1: Scaling of urban infrastructural and socioeconomic quantities. (a) Total lane miles
(volume) of roads in US metropolitan areas in 2006 (blue dots). Lines show the best fit to a
scaling relation Y = Y0N

β (red), with β = 0.849± 0.038 (95% CI, R
2 = 0.65), the theoretical

prediction for β = 5/6 (yellow) and linear scaling β = 1 (black). (b) Gross Metropolitan
Product of US metropolitan area in 2006 (green dots). Lines show the best fit (red), with β =
1.126 ± 0.023 (95% confidence interval, R

2 = 0.96), the theoretical prediction, β = 7/6
(yellow), and proportional scaling, β = 1 (black).
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Figure 2: The city in space and its balance of social and dissipative processes. (a) Grey blocks
denote settled areas while spaces in between (white, yellow, green) represent infrastructure
networks. Note that land area A = L

2, and that network length Ln is proportional to A, Ln =
2(λ + 1)L � A/l, see SI for details. Red lines denote the volume of public space spanned
by an individual, which determines his mean number of social interactions and productivity.
As the city grows and new land is settled (orange blocks) the infrastructure network grows
incrementally (pale orange). (b) There is an optimal value of the parameter G at which city’s
are most productive. Social networks become unstable to the formation of cities if net social
interactions are positive G > Gmin = 0, and less than an upper value G < Gmax (red circles),
when costs overcome social benefits. In between there is an optimal G = G

∗ (green circle) at
which benefits Y

∗ maximally overcome costs W
∗.
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Supplementary Text

From social interaction networks to the mean field approximation

In general I can write the sum total of all social interactions in terms of a generalized graph, Ak

ij
,

(a graph between elements i and j, mediated by a set of different interaction types - friendship,

employment, acquaintance, etc - indexed by k) as

Y =
�

i,j;k

gkA
k

ij
, (S.1)

where gk is the strength per link of the interaction of type k to generate the total output of

the city, Y . Note that the couplings gk can be either positive (attractive, expressing a social

benefit, e.g. mutually beneficial economic relations) or negative (repulsive, expressing a social

cost e.g. crime), though the balance must be positive for the city to exist, see below. The

couplings gk have dimensions of Y per interaction, for example units of money or energy per

unit time, per interaction. In a city there are many forms of interactions. For example, economic

transactions contribute to economic output in terms of wages, profits, and many other quantities.
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Crime, in contrast, may be the output of non-economic interactions such as those between

the perpetrator and the victim as well as those mediated by law enforcement and by citizens

themselves. Likewise the interactions that lead to the spread of a contagious disease will be

mediated by their specific types of encounters. The urban environment affects its citizens across

all these dimensions so that a theory of cities must take them into account together.

The essential point I make here is that all these processes share the same average underlying

dynamics of social encounters in space and time, against the background of the city and its

infrastructure networks. To see this more explicitly, first consider the number of interactions

Ii,k of a specific individual i, across all modes, k,

Ii,k =
�

j

A
k

ij
. (S.2)

I consider the situation where the strength of the interaction, k, is statistically independent of the

specific pair i, j so that I can write A
k

ij
= p(k|ij)Aij = p(k)Aij , where p(k) is the probability

of different interaction modes, k, per link and Aij is the social network across all interaction

types. Now consider that these interactions take place in space and time. Each individual is

characterized by an interaction area a0 (a cross section in the language of physics), which I

assume is an invariant (a property of a person, independent of population size or other urban

quantities) and by a length traveled in the network �. This spans a world-sheet, which is a

fraction of the total public space volume, Vn, (or area, in 2D networks) of the city. Because

both a0 and � are intrinsic properties of individuals I take these two parameters as independent

of the type of interactions k.

Taking all people to be homogeneously distributed in this volume (the mean field assump-

tion), the total interactions experienced by our test individual are given by the ratio of the two
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volumes times the total number of (other) individuals, i.e.

Īi,k = p(k)

�
d

D
xρ(x)δ (x− x(t)) � p(k)ρn

�
dx

D
δ (x− x(t))

= p(k)a0�
N − 1

Vn

� p(k)a0�
N

Vn

, (S.3)

with ρn the average density in public networks, where interactions take place. In this last expres-

sion I wrote N − 1 � N , for large N (1). Note that any other sufficiently short-range potential,

not necessarily a δ-function, would lead to the same result, Eq. (S.3), up to a dimensionless

multiplicative constant, independent of N . Then I can finally write

Īi =
�

k

Īi,k = ḡ
a0�

Vn

N, ḡ =
�

k

p(k)gk, (S.4)

which are the total interactions experienced on the average by an individual i, in a city of popu-

lation N , and public volume Vn. The coupling ḡ is the average strength per link of interactions

over all modes. In the main text I take the volume of public space of the city to scale like that

of its infrastructure networks An. In the two dimensional case (D=2) the cross sectional area a0

takes the dimension of a traverse length, so that the ratio of (2-dimensional) volumes remains a

pure dimensionless number. Thus, we obtain

Y =
N�

i=1

Īi = G
N

2

An

, (S.5)

with G ≡ ḡa0�. It is important to stress that although social interactions are local and take place

at the most microscopic level between two individuals, Eq. (S.1) leads nevertheless to effective

interactions between individuals that are not directly connected, through chains of people be-

tween them, and between individuals and institutions (firms, public administration) as well as

between institutions themselves. These effective interactions are obtained via the appropriate

groupings of individuals in social or economic organizations and by the consideration of the re-

sulting coarse-grained interactions between such entities (which are always ultimately mediated
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by people). Institutions and industries that benefit from strong mutual interactions may aggre-

gate in space and time within the city in order to maximize their Y , while others may benefit

from the mean-field effects that result from being in the wider city and collecting a diversity

of interactions. This analysis of the finer structure of more heterogeneous interactions, which

requires considerations beyond the average behavior derive here, will be considered elsewhere.

Likewise the analysis of the fine structure of types of functions and interactions in cities, for

example in terms of professions, and their connection to superlinear increases in socioeconomic

productivity is developed in detail in (2).

Mixing, exploration of space and Hausdorff dimension

Here I develop more detailed considerations about the exploration of space by individuals that

may take place in cities and the necessary conditions for a mixing population. The general

idea is that, to benefit from their integration in the city individuals explore different locations

at different times, but must be able, on their most basic budget, to explore the city fully. I

parameterize this general behavior in Eq. (S.6) by H , the Hausdorff dimension of a path in

space. Cm is the cost associated with such path, which is written in terms of the city’s land area,

A, as

Cm = �A
H

D , (S.6)

in D general dimensions. The minimum budget that a new citizen may naturally muster is

Ymin = GN/A, which is much smaller than the average budget, Y = GN/An, because A >>

An. Thus, this can be seen as an entry condition into the city, a new citizen, perceiving the city

only in an unstructured way, before knowing its networks and public spaces, should be able to

reach anyone else in the city. Equating Cm to Ymin leads to a relationship between population
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and area of the form

A = aN
α
, (S.7)

with the exponent α = D/(D + H) � 2/3, for D = 2, H = 1, and the area per person

a = (G/�)α. Note that a is a rising function of G, which controls the average strength (and

productivity) of social interactions, and of decreasing � the cost of transport per unit length.

Thus, increases in human capital, mobility and the diversity of social interactions, if expressed

in increasing values of G, and increases in transportation efficiency, leading to decreases in �

lead to a larger a and an overall less dense city, while preserving the scaling relation. This

is consistent with the observed trend in modern cities throughout the world to become less

dense (3). The parameters G and � are generally time dependent and may also show some

(small) city size dependences a subject that I explore in the main text.

H = 1 corresponds to the most natural assumption, that these costs are proportional to the

linear extent of the city and is clearly sufficient for an individual to reach any location in the city

by himself. This is the assumption that is made (often implicitly) in urban economic models of

land use, due to Alonso, Müth, Mills and others (4, 5).

H < 1 corresponds to a trajectory with a volume less than linear and is in practice a series of

separate spatial clusters. This means that an individual cannot reach the entire city by himself,

though the city may still stay connected via a chain of local interactions. While a city can

exist as such, cities would become more and more disconnected as they grow, requiring a larger

number of overlapping zones and interpersonal contacts to be available to each citizen. In this

regime a city would then behave as a series of separate interacting communities rather than a

whole mixing population, a characteristic that is often used to define the absence of a bona fide

functional city. Given available data, which provides typically only total administrative unit

area for a city or metropolitan area, this H < 1 regime seems to be sometimes observed, see
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discussion below.

Conversely, H > 1 means that the length of trajectories scales faster than a linear volume,

and in particular for H = 2 they would scale as an area (and for H = 3 as a 3D volume). Be-

cause cities are approximately two dimensional we may expect H ≤ 2 to be an absolute upper

bound, which leads necessarily to α ≥ 1/2. It is important to stress that although individuals

may explore the city in a way that is area filling locally, this does not imply that H = 2 in

general. This is because the characteristic length is measured here in terms of the area of the

city, and consequently H = 2 would mean that they would have to cover the entire land area

over a given time period. This seems manifestly counterfactual, certainly for large cities. For

all these reasons, while I leave H as a parameter in the main tex, I expect that it would naturally

be of order H � 1, with α � 2/3 as is observed for contemporary US metropolitan areas.

There have been many attempts at characterizing the scaling relation between the land area

of cities and their population. Most of these characterizations use definitions of cities in terms

of sets of administrative units (counties, municipalities) which leads to several potential biases.

Nevertheless, for example Nordbeck (6) found that for cities in Sweden over two time periods

α � 2/3, which is also consistent with US metropolitan statistical areas in recent years (7).

However, other studies found values of α in the range 2/3 ≤ α < 1, (8), but these report on a

variety of different definitions of city, ranges of scales, etc. While increases of population den-

sity with city size within each urban system and city type are an undisputed property of cities

worldwide more consistent and accurate measurements of the scaling of land area with popula-

tion remain necessary. Note, finally, that under the assumption of decentralized infrastructure

networks, land area, A, enters the determination of An via a factor of A
1/D, so that the impact

of fluctuations in A is reduced as they enter other urban quantities and differences in the value

of α are effectively halved (D = 2).
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Infrastructure networks’ length is area filling

I have assumed in the main text the property that networks of infrastructure fill the occupied

area of the city. This assumption is implicit in the principle that infrastructure networks grow

in a decentralized way in order to connect each addition of a new inhabitant. This assumption

means more explicitly that any occupied land area (as residence, business or any other use)

can be reached by people, goods and information traveling over infrastructure networks. The

technology involved in these networks varies enormously with level of urban development but

I assume here that the geometry of the networks does not. Figure 1 illustrates this situation for

a regular grid. In this case the total length of the network can be derived easily, see Figure 1

(main text), as

A = L
2 = (λl)2; Ln = 2(λ + 1)L = 2(λ + 1)λl =

2

l
A + 2

√
A ∼

λ>>1
A, (S.8)

where l is the average block size, λ is the number of blocks in the city, and L = λl. For networks

that are not, on the average, square grids the constants multiplying the factors of area A will

differ, but not the space filling character of the network, expressed as Ln ∼ A/l.

Boundary conditions and scaling of currents

Here I show more explicitly the effect of the choice of boundary conditions on network model

variables and the introduction of certain invariant network properties. This choice is important

because it sets the scaling behavior of dissipation. I have assumed that the width of terminal

network units, s∗, is a constant, independent of city size. Although seemingly an abstract as-

sumption this means in practice something quite intuitive, that house doors, water faucets and

electrical outlets, for example, each have a common cross section that does not vary with city

population size. This means that I can write the scaling of width across network levels as

si = s∗b
(i−h)(δ−1)

, (S.9)
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which implies that the width is largest at the highest level (i = 0: root, ”highways”) s0 =

b
h(1−δ), since b > 1 and δ << 1. in addition recall that Ni = bNi−1, N = Nh = b

h and that it

follows from the conservation of flux that

siρiviNi = si−1ρi−1vi−1Ni−1, ∀h

i=1. (S.10)

This condition should be relaxed in general for a network that is not a (balanced) tree, as for

example, would happen in a semi-lattice (9), where branches at the same level are connected,

or upper branches can converge on the same lower site. Note that this is the only place where

the tree structure of urban networks is used explicitly. The difficulty with these generalized

structures is that their geometry can be highly variable and the result must be treated statisti-

cally, or just bounded (10). The assumption made here, as we shall show below, leads to the

smallest dissipation. Any of these generalized structures would therefore be more restrictive.

This condition leads to the scaling relation for the current density

ρivi = b
−δ

ρi−1vi−1. (S.11)

This relationship is not fully specified until we prescribe its boundary conditions. We can place

a limit on the current density at the root ρ0v0 = const, which leads to ρivi = b
−iδ

ρ0v0, or

at the smallest branches ρhvh = ρ∗v∗, which leads alternatively to ρivi = b
δ(h−i)

ρ∗v∗. These

conditions result in the forms for the total current at each level

Ii = siρiviNi = s∗ρ0v0b
h(1−δ)

, (S.12)

or

Ii = s∗ρ∗v∗b
h
, (S.13)

respectively. Both these forms are independent of level i, a necessary consequence of total

current conservation, but they scale with population size in different ways. Specifically, given a
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boundary condition at the root we have Ii = I = s∗ρ0v0N
1−δ, and for the boundary condition

at the leaves this leads to I = I0N , with I0 = s∗ρ∗v∗. Note that the latter is the expected

current for a population of identical individuals, in terms of their intrinsic parameters, and is

therefore the natural boundary condition. It means in intuitive terms that the flow of people

through doors in their homes is similar across cities of different sizes and that the consumption

of water, electricity, etc, per capita in households is an invariant of city size, as observed (11).

Thus, the differences between cities arise at larger scales, where social interactions are more

common and population-wide constraints apply, see below.

Dissipation on infrastructure networks

There are many dissipative processes (costs) that can take place in a city and that can lead to

situations where increasing social interactions and their products may be more than overcome

by their associated costs. In the main text we assume the the resistance at each level of the

network is that of all branches taken in parallel (c.f (12)), that is

Ri =

�
Ni�

i=1

1

ri

�−1

=
ri

Ni

, (S.14)

as usual, if all branches have the same resistance ri. The resistance of each branch is a purely

geometric property of the network, times a resistance, r, per unit length and transverse area,

ri = r
li

si

= r
a

ls∗
b
(α−δ)i+hσ

, (S.15)

which increases with level i, and is therefore larger at the smallest branches than at the root.

From (S.14) this leads to

Ri = r
a

ls∗
b
−(1−α+δ)i+hσ

, (S.16)

which decreases with i and is therefore larger at the root (highways) than at the leaves (narrow

local paths). This is a direct result of the assumed parallelism of the branches at each level. If
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they are not strictly operating in parallel then the total resistance will decrease less slowly from

the root to the leaves of the network, and be larger in total, leading to higher dissipation than

estimated here. We can put the conditions on the current and resistance together to obtain the

total power dissipated, W , as

Wi = RiI
2
, (S.17)

W =
h�

i=1

Wi = I
2

h�

i=1

Ri = rI
2 a

ls∗
b
hσ

1− b
−(h+1)(1−α+δ)

1− b−(1−α+δ)
= W0N

1+δ
, (S.18)

which scales superlinearly, with an exponent 1 + δ � 7/6. W0 � r
as∗(ρ∗v∗)2

l(1−b−1+α−δ) . We see

that the dissipative behavior of the network is set by the current squared multiplied by the

resistance at the root. The current, in turn, is set by conditions at the smallest branches, that is,

by the fundamental properties of people and their behavior. Thus, the main overall contribution

to these dissipative processes results from people, energy, information, etc, being channeled

through a network with many levels, and of the bottlenecks that occur at its largest scales.

Remarkably, this result ties together the most microscopic needs and behaviors of individuals

to the most macroscopic aspects of the urban infrastructure.

Another way to see this is to rearrange terms in Eq. (S.18) to write it as

W = r
�
�

a

l

�2 I
2

An

(S.19)

where r
� = r

(1−bα−δ−1)(1−bα+δ−1) . This shows that that the dissipation term can be made smaller

by increasing the infrastructure network’s total volume, An. In contrast, as we have seen above,

making An smaller increases the social outputs of cities. Thus, we may expect an equilibrium

between the detailed consequences of these two effects that leads to an optimal allocation of

infrastructure to social interactions as a function of population size (and level of technology).

10



Global optimization

Here I show that the principles discussed in the main text can be formulated in terms of a

constrained optimization problem, where each individual maximizes the outcome of his/her

interactions minus costs, subject to the general infrastructural and size constraints posed by the

city, and where city infrastructure can be managed so as to maximize individual welfare. We

write the objective function, L, for this problem as

L = Y −W + λ1

�
�A

H/D −GN/A
�

+ λ2

�
An − cρ

−1/D
N

�
. (S.20)

where c = s∗a
1−1/D

/[l(1 − b
α+δ−1)] is a constant that follows from Eqs. 2 and 4 and λ1, λ2

are Lagrange multipliers. From the point of view of individuals, they can structure their inter-

actions in space and time so as to maximize the benefit of being in the city, while minimizing

costs. This is expressed primarily in terms of the factors that enter G. In turn, city authorities

can provide organizations (which affect the interaction modes) and infrastructure so that their

general socioeconomic benefits are maximized. This can be expressed in terms of the variation

of An (and of the factors that make it). Varying (S.20) relative to A and An leads to

Y (N) = G
N

2

An(N)
, W (N) = r

�
�

a

l

�2 I
2

An(N)
, (S.21)

That is it imposes the dependences in N of A and An discussed in the main text and their

consequences for social outputs and network dissipation.

Now observe that the problem of matching the sum total of social interactions to costs has

two solutions in terms of values of G, specifically

G ≡ Gmin = 0, or G ≡ Gmax =

�
(�α

l)2

r�I2
0

� 1
2α−1

. (S.22)

The first solution at G = 0 means that for a city to exist it needs to have some level of net positive

social interactions, G > 0. The second solution is the point at which network dissipation costs
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overwhelm the social benefits of the city, beyond which the city may loose population and even

collapse. In between these two extremes there is a special value of the coupling G = G
∗ for

which the balance is positive and largest. We can determine this point by taking the variation of

L relative to G, (recall that a = (G/�)α), to obtain

dL
dG

=

�
(1− α)− α

r
�
I

2
0

G

�
a

l

�2
�

N
2

An(N)
= 0, (S.23)

which results in the solution

G = G
∗ =

�
1− α

α

� 1
2α−1

Gmax ≤ Gmax. (S.24)

This condition implies that there is an optimal G to which any city should converge in order to

maximize its difference between net social output and dissipation. Note that the city can only

exist if social outputs are larger than dissipation and that, starting with small G > 0, it pays to

increase the coupling for a while. However increasing it beyond G > G
∗ leads to dissipation

rising faster than social outputs, reducing the net difference between the two and ultimately

canceling them altogether.

Finally we can rewrite the Lagrangian at G
∗ as

L = Y −W =
2α− 1

α
G

∗N
2

An

. (S.25)

We could in general consider a last step to optimize the problem over the exponent α (or con-

versely H , at fixed D) to find its optimal value. This optimization step is complex however

and requires some further consideration of the microscopic aspects of the problem, so I leave it

for future work. We can also turn (S.20) into a much more detailed optimization problem, by

specifying Y , W , and An in terms of their detailed microscopic components, involving social

and infrastructural networks, as discussed in the main text. This leads to variations relative to

li, si, ai, and ρivi. However the aggregate results on scaling remain unchanged. In principle
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this procedure can be used in general to determine an optimal detailed structure of social net-

works, given infrastructure and vice-versa so that the balance of social outputs minus costs are

maximized.

We see therefore that the optimization that is achieved in the city is open ended relative to

population size N as long as both individual choices and infrastructure can be adapted to (close

to) their optimal values. This emphasizes the interplay between individual and social behavior,

which constitutes the necessary condition for the city to exist and the role of infrastructure and

policy in creating the conditions that promote the benefits and reduce the costs, of human social

behavior. Note that taken separately, social output could be increased by e.g. increasing the

magnitude of G, or reducing An. However, this would lead to larger increases in dissipation

which would eventually overtake the original benefits. Conversely, as it has been often tried,

dissipation can be minimized by infrastructure expansion and by other measures that decrease

density. Such measures however tend to reduce social interactions thereby decreasing socioe-

conomic outputs. Thus, cities can exist in an open-ended state of dynamical equilibrium, char-

acterized in principle by unlimited population and socioeconomic growth, provided an optimal

interplay between social networks and infrastructure is maintained as they grow.

Data sources

Data for roads in United States Federal-Aid Urbanized Areas (mostly equivalent to Metropoli-

tan Statistical Areas) is provided by the Office of Highway Policy Information from the Federal

Highway Administration. It is available online at http://www.fhwa.dot.gov/policy/

ohim/hs05/roadway extent.htm. Gross Metropolitan Product for US Metropolitan

Statistical Areas (functional cities) is compiled by the US Bureau of Economic Analysis (BEA)

and is available online at http://www.bea.gov/regional/
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